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Introduction

The PAR1CH, PAR4CH and PAR8CH analog-to-digital converter boards from Symmetric Re-
search utilize the Burr-Brown ADS1210 chip, a second-order sigma-delta A/D converter in-
corporating a three-stage low-pass filter. The digital low-pass filter is an essential component
of the ADS1210 (and in general of all sigma-delta converters) and defines the precision of the
output digital samples. In this application note, we describe the theoretical filter response of
the ADS1210, and experimentally verify this response by evaluating the digital output from
known, accurate square-wave and triangle-wave analog input signals.

Sigma-Delta A/D Converters

A generic sigma-delta converter consists of the following components:

1. A modulator (a high-frequency single-bit sampler),

2. A low-pass digital filter,

3. A decimator that subsamples to the desired output rate.

The modulator samples the analog input signal at a rate fMOD typically much higher than the
desired output rate fOUT. Each sample from the modulator takes on one of two values: the
maximum and minimum voltage levels that the A/D converter may accept without saturating.
The modulator thus generates a time series of 1-bit samples, but does so in such a way that
the original input signal is recoverable from the low-frequency components of the time series.
To understand how this magic can occur, let’s examine the modulator stage in more detail.

Figure 1 illustrates the sigma-delta modulator implemented in the ADS1210. The order of the
modulator is defined by the number of differencing (delta) and integration (sigma) units before
the 1-bit quantizer. The quantizer rounds the signal to the nearest voltage level VMIN or VMAX.
This nonlinear operation is theoretically modeled by assuming that a quantization signal Q has
been added to the input to form the output signal Y , which can take on one of two possible
values, VMIN or VMAX.

A Z-transform analysis of the circuit in figure 1 is easily performed. A one-sample delay built
into the 1-bit DAC unit is modeled by the operator z, and the integration unit is modeled by
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Figure 1: Block diagram of a second-order sigma-delta modulator. The input signal x(t) is fed
through two stages, each consisting of a differencer (the delta or

∑
unit) and an integrator (the

sigma or
∫

unit). The comparator examines the resulting signal and assigns a 0 to the sample
if it is closer to VMIN, or 1 if it is closer to VMAX. The digital output stream yk consists of 0’s
and 1’s. The sampling rate of the comparator is typically many hundred times higher than the
desired output sampling rate of the A/D converter. The 1-bit DAC unit converts the sample
back to VMIN or VMAX (the signal y(t) in the text), imposing a one-sample delay in the process,
and then negatively feeds the signal back to the delta units.

1/(1− z). The Z-transform expression for the circuit is then[
(X(z)− z Y (z))

1
1− z

− z Y (z)
]

1
1− z

+Q(z) = Y (z) (1)

Solving for Y (z) yields
Y (z) = X(z) + (1− z)2Q(z) (2)

where z ≡ exp(iω∆tMOD) and ∆tMOD (the modulator sample interval) ≡ 1/fMOD.

The fundamental assertion in sigma-delta conversion is that the quantization signal Q is a
random, independent time series. For certain special input signals, this assumption may fail,
for example in the case of idle tones [3], but otherwise it holds remarkably well. If so, the
amplitude spectrum of Q(z) is uniform, with amplitudes of the same order as X(z), and the
effect of the filter (1 − z)2 in equation 2 is to suppress the low frequency components of Q
relative to X. That is, for values of z close to unity, Y (z) ≈ X(z). To recover X from Y ,
simply apply a low-pass filter to Y . For more details on the theory of sigma-delta converters,
see reference [1].

Low-Pass Filtering and Decimation

The output time series is derived by filtering the modulator time series, then decimating the
series by a whole number of samples. The output sample rate fOUT is therefore controlled by
the modulator sample rate fMOD and the decimation factor N (a whole number):

fOUT = fMOD/N. (3)

For the ADS1210, N may range from 19 to 8000 [2]. Given the decimation factor N , the
simplest way to filter and decimate is to form the average of every group of N input samples.
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Figure 2: Three-stage low-pass averaging filter f3 (equation 6). In this example, fMOD =
312.5 kHz and decimation factor N = 312. (a) In the time domain, the FIR filter has a length
of 3N samples, and an apparent time delay of 3N/2 samples. It is a convolution of three
“boxcars”. The area under the curve is 1. (b) In the frequency domain, notches occur in the
amplitude spectrum at multiples of fOUT = fMOD/N . Only the first 6 lobes of the filter are
shown; the Nyquist frequency is actually at 156.25 kHz. Once the time series is decimated to
fOUT, the Nyquist is reduced to fOUT/2 = 500.8 Hz. All energy in the signal above this point
will be aliased.

An N -sample running average filter in Z-transform notation is

f1(z) =
1
N

N−1∑
k=0

zk. (4)

An equivalent expression for f1(z) is

f1(z) =
1
N

1− zN

1− z
. (5)

Equation 5 implies an efficient way to implement the filter/decimation step: (a) integrate with
1/(1 − z); (b) decimate by N ; and (c) differentiate the decimated series with (1 − z′) where
z′ = zN is the appropriate z-value to use on the decimated series. The advantage of the filter
form in equation 5 is that multiple low-pass stages may be implemented with little more effort
than that required for a single low-pass stage. The ADS1210 employs a three-stage running-
average low-pass filter:

f3(z) =
1
N3

(1− zN )3

(1− z)3
. (6)

Since filter f3 is the convolution of three “boxcar” filters, it has a finite impulse response (figure
2(a)). The phase response of f3 is linear, and is equivalent to a time delay of 3/2 ·∆tOUT where
∆tOUT ≡ 1/fOUT is the sample interval of the output time series. The amplitude spectrum of
f3,

|f3(ω)| =
∣∣∣∣ sin(Nω/2fMOD)

sin(ω/2fMOD)

∣∣∣∣3 , (7)

is shown in figure 2.
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Experimental Response to a Square Wave Input

In order to verify that filter f3 (equation 7) characterizes the amplitude response of the ADS1210
to an analog signal, a precision square wave was presented to the A/D converter and the digital
output analyzed.

Complicating the analysis is the fact that the filtering and decimation steps are combined, with
the ADS1210 issuing samples at the output frequency fOUT. High frequencies in the input
square wave (not insignificant due to the sharp edge present on the square wave) are folded
about the Nyquist frequency fOUT/2 into low frequencies by the decimation process. For the
purpose of measuring the unaliased filter response, it is desirable to recover the digital signal
at the internal sampling rate fMOD instead of the output sampling rate fOUT. This can be
done by employing a principle similar to that of a sampling oscilloscope: assume that the input
is periodic, and measure the output over many cycles. Follow this with the construction of a
single composite cycle by wrapping the output about the signal period. The composite cycle
thus appears to be sampled at an arbitrarily fine rate provided that the signal period is not an
even multiple of the output sample interval ∆tOUT.

Let us illustrate the formation of a finely sampled composite cycle with numbers from the actual
experimental setup. The PAR4CH unit provides a 10 MHz clock signal to the ADS1210. With
the Programmable Gain and Turbo Mode Rate settings of the ADS1210 at their default values
of 1 and 16, respectively, the modulator sampling rate is

fMOD = 10 MHz / 32 = 312.5 kHz,

and the modulator sampling interval is

∆tMOD= 1/fMOD= 3.2µs.

An output sampling rate of 1 kHz is desired, but since fOUT depends on the modulator rate
fMOD and the oversampling factor N (equation 3), the best we can do is to set N to:

N = 312 (oversampling rate),

which defines fOUT and ∆tOUT to be:

fOUT = fMOD/N = 1.0016 kHz (approximate),
∆tOUT = ∆tMOD ·N = 0.9984 ms (exact).

The analog test signal applied to the PAR4CH was a square wave derived from a crystal-
controlled oscillator. The oscillator frequency of 1.000 MHz was divided by 214 to yield a
square wave frequency fSQ and period TSQ of:

fSQ = 1 MHz / 16384 = 61.035 Hz (approximate),
TSQ = 1µs · 16384 = 16.384 ms (exact).

The two regulated voltage levels of the square wave were 0V and +5V. A Schmitt trigger was
used to sharpen up the leading and trailing edges of the square pulses: the rise and fall time
on each edge is approximately 20 ns.

The number of output samples in one cycle of the input square wave, TSQ/∆tOUT, is approxi-
mately 16.41, meaning that after every 16 samples, another cycle of the square wave is presented
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to the A/D converter apparently shifted to the right by 0.41 samples. Since 41 and 100 do not
share common factors, the composite waveform assembled from 100 cycles of the input square
wave appears to be sampled at a rate 100 times the actual sampling rate fOUT.

In reality, the “exact” times TSQ and ∆tOUT are precise only to the range of a microsecond.
The 1 MHz oscillator generating the analog square wave has a timing accuracy of 0.1 percent.
Temperature coefficient effects in both the test signal generator and in the PAR4CH were
observed to cause timing drifts on the order of 1µs in 100 seconds. Consequently, there is
enough randomness to the ratio between TSQ and ∆tOUT such that an arbitrary number of
cycles may be folded into the composite waveform, resulting in good uniform coverage at an
arbitrarily fine sample interval.

Figure 3 shows an example of a composite waveform assembled from 200 seconds of digital
output from a PAR4CH unit, representing about 12 000 cycles of the input square wave. Ap-
proximately 200 000 individual samples make up the waveform. Figures 3(b) and 3(c) show
enlargements of two regions of the plot in figure 3(a). The individual samples are plotted as
points, and although there is a random element to their spacing in time, the coverage is uniform
enough to provide an effective sampling interval of 100 ns.

The high resolution in time of the composite waveform is confirmed by the “stair-step” features
on the waveform seen in figures 3(b) and 3(c). The unexpected features are a result of the
sample-and-hold circuitry on the ADS1210. Each modulator sample interval, spanning 3.2µs,
consists of a sample window followed by a hold window. During the sample window, a low-
impedance path from the input signal to the sampling capacitor allows the capacitor to charge
to the input voltage level (+5 V). During the hold window, the charge on the capacitor is
presented to the comparator. On subsequent cycles, the leading edge of the square wave is
progressively delayed, and the sampling capacitor has progressively less time to charge from
0 V to +5 V during the time the sample window is open. Consequently, the sample points in
one “step” in figure 3(b) effectively trace out the exponential RC charge curve on the sampling
capacitor. The reported RC time constant of the ADS1210 sample-and-hold circuitry [2] is 2µs
(i.e. 8 pF · 250 kΩ) which is consistent with the charging curve seen on each step in the figure.

Ideal versus Measured Filter Response

For the subsequent filter analysis, the composite waveform of figure 3 was resampled to the
modulator rate fMOD, with samples taken from the “hold” window in the modulator sample
interval, that is, on the flat portion of each stairstep in figure 3(b).

The amplitude spectrum of the waveform from figure 3 is drawn in black in figure 4(a). This
represents the spectrum of a square wave filtered by the ADS1210 for frequencies all the way
up to the modulator Nyquist fMOD/2. Figure 4(b) shows the spectrum for frequencies that are
more in the range of interest, up to 10 kHz. In fact, the meaningful (unaliased) frequencies of
the output are no greater than the output Nyquist, fOUT/2 = 0.5 kHz. The spectral holes are
positioned at multiples of fOUT, as expected.

The gray curve in figure 4(b) is the ideal spectrum of a pure square wave with the same power
and period as the experimentally-generated square wave. The amplitude response of the low-
pass filter is derived by dividing the black curve by the gray curve, or (in the log-amplitude
domain) by taking the difference of the two curves. The resultant measured spectrum of the
filter is shown in figure 5. For comparison, the theoretical amplitude response of the low-pass
filter (equation 7) is drawn in gray on figure 5. There is a good match between the measured
and the theoretical amplitude spectra out to the 6th aliased lobe (6.5 kHz).
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Figure 3: Response in the time domain to a periodic square wave. The black curve in (a)
shows one cycle of the filtered square wave, with a period of 16.384 ms. The curve is a “stack”
(composite) of 12 000 cycles from the output of the PAR4CH. As a consequence, the sampling
is irregular, with an average sample interval of approximately 100 ns. The PAR4CH unit puts
out samples as 24-bit integers; an amplitude of 0 on the plot represents 0 V on the differential
input, and an amplitude of approximately 1 950 000 represents an input of 5 V. For comparison,
the ideal input square wave is shown in gray, scaled to match the measured curve. The actual
edge rise and fall times of the input square wave are on the order of 20 ns. Two regions of
the black curve are shown magnified in (b) and (c), in which individual samples are plotted.
The stairstep appearance of the curve is a consequence of the sample-and-hold circuitry in the
modulator: every 3.2µs, the signal voltage is presented to the sampling capacitor and held for
the comparator to make its choice. Each stairstep resembles the shape of an RC charge (and
discharge) curve.
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Figure 4: Amplitude spectrum of filtered square wave. Plot (a) shows the full frequency range
to the Nyquist fMOD/2. Plot (b) shows the same curve limited to 10 kHz. Beyond 10 kHz
the spectral components drop below the -140 dB floor representing sample roundoff noise (the
samples in the time series are stored in 32-bit IEEE floats). The gray curve is the amplitude
spectrum of the ideal, unfiltered square wave. Since the even-indexed frequency components of
a periodic square wave are zero, only the odd-indexed frequency components are shown.
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Figure 5: Comparison between the theoretical and measured filter spectra. The black curve is
the measured amplitude spectrum of the 3-stage low-pass filter, estimated from a square wave
input. It is the difference between the two curves in figure 4. The gray curve is the theoretical
amplitude spectrum from equation 7, sampled at the same rate as the black curve. The spectral
holes at 1 kHz intervals are more pronounced if the sampling of the frequency axis were made
finer.
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Figure 6: Response to a triangular wave input. Three curves are shown: black indicates the
measured response, gray indicates the theoretical filtered response, and light gray indicates the
theoretical unfiltered input signal. (a) In the time domain, the measured and theoretical curves
overlap precisely. (b) In the frequency domain, the measured and theoretical curves diverge at
the point where the limit in sample precision is reached: about -140 dB or 23 bits.

Triangular Wave Input

Similar tests were performed with a periodic triangular wave signal as input. Figure 6 shows
the results of such tests. The black curve in figure 6(a) illustrates how the low-pass filter
smooths the corners of the triangular wave as expected. Both theoretical and measured curves
are plotted in figure 6(a), but the match between the two is so close at this scale that the
overlap is exact. A third curve, the unfiltered triangular wave signal, is also shown in light
gray.

The amplitude spectra of the three curves in figure 6(a) are plotted in figure 6(b). As in the
case of the square wave input signal, the frequency components of the measured triangular
wave match those of the theoretical filtered wave as long as the component amplitudes are
above -140 dB, the roundoff noise floor. In the triangular case, the noise floor at -140 dB is
reached sooner (by approximately 3 kHz), since the theoretical rate of decay of the frequency
components is twice that for the case of the square wave.

Antialias Filter Issues

The fact that, in sigma-delta A/D converters, the input signal is oversampled by the modulator
and digitally filtered does not alone prevent aliased energy from corrupting the output time
series. Take for example a desired sample rate of 100 Hz. From figure 5 it is seen that signals
from the Nyquist (50 Hz) up to about 80 Hz are passed with a range of attenuation from 10 dB
to 40 dB. At the 80 dB attenuation level, signals up to 200 Hz may be passed. Placing an analog
antialias filter in front of the PARxCH unit is one obvious solution, but problems common to
analog filters may prove unacceptable, such as the resulting distortion of the phase spectrum.

One alternative to an analog prefilter is to move part of the task of oversampling/filtering
from the A/D converter downstream into the computer. For example, if a final sample rate of
100 Hz is desired, the PAR4CH may be configured to output samples at 1 kHz. The subsequent
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filtering and subsampling to 100 Hz may be done on the computer, with the freedom of being
able to apply a custom-designed digital antialias filter with zero phase distortion. The antialias
filtering stage may also restore the precision to the final 100 Hz samples that may have been
lost from sampling at the higher rate of 1 kHz in the PAR4CH unit.

Conclusion

We have experimentally verified that the amplitude response of the built-in low-pass filter in the
PARxCH A/D converters as given in equation 7 is correct. Figure 5 illustrates the comparison
between the theoretical amplitude response and that calculated from a square wave input signal.
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